We have enabled User registrations.
+1 vote
by

Find the area enclosed by the curve x = t^2 - 2t , y=sqrt(t), and the y-axis.

1 Answer

0 votes
by
 
Best answer

First find the the value of t where the curve intersects the Y-axis. This is when x = 0.

x = t^2 - 2t = 0 = t(t - 2)

So t= 0 and t = 2

dA = (0 - x)*dy .... Since the curve has negative x in this region

y = SQRT(t) and dy = [(1/2)/SQRT(t)]dt

dA = [2t - t^2][(1/2)/SQRT(t)]dt

dA = [t^(1/2) - (1/2)t^(3/2)]dt

Integrate to get: A = (2/3)t^(3/2) - (1/5)t^(5/2)

Now evaluate from t= 0 to t = 2.

Area = [(2/3)2^(3/2) - (1/5)2^(5/2)] - [0]

Area = SQRT(2)[4/3 - 4/5]

Area = SQRT(2)[8/15) = 0.754

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat.
SHOW ANSWER
...