The blue curve is the plot of the data. The orange line is tangent to the blue curve at t = 40 s.?

The blue curve is the plot of the data. The orange line is tangent to the blue curve at t = 40 s.?

for the reaction

A-->products

t(s) [A] (M)

0 0.52

20 0.43

40 0.35

60 0.29

80 0.24

100 0.20

Approximate the instantaneous rate of this reaction at time t = 40 s.

________? M/s

by
edited by

let's build on your basics a bit. read through my answer here

note this table of equations

.. .. .order.. .. .. . non-integrated.. .. .. . ..integrated

.. .. . .. 0.. . .. . ...rate = k x [A]°... .. .. . . ..[At] = -kt + [Ao]

.. . .. .. 1.. . .. . ...rate = k x [A]¹... .. .. . . ln[At] = -kt + ln[Ao]

.. . .. . .2... . .. .. .rate = k x [A]²... .. .. . . 1/[At] = +kt + 1/[Ao]

note the difference between non-integrated and integrated

.. non-integrated... RATE vs concentration

.. .. . .integrated... .TIME vs concentration

and from calculus, we know that the derivative of a function at a given point = the tangent at that point on the curve. and we can see that the non-integrated rate law is the derivative of the integrated curve.

meaning...

.. the rate of reaction = the slope of the tangent line at the given t value on the

.. time vs concentration plot.

***********

so.. do this

.. (1) draw the plot

.. (2) draw the tangent line

.. (3) pick two points on the tangent line and calculate slope.

.. .. ..I chose (20,0.42) and (60,0.28)

.. (4) rate = -1 * that slope... (it's negative because -d[A] / dt = rate... it's decreasing)

***********

I get

.. rate = - (0.42 - 0.28) / (0.20 - 0.60) = 0.0035 M/sec

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat.
by

You just need to determine the slope of the orange line by calculating it:

slope = (y2-y1) / (x2-x1)

Pick any two points on that tangent line to use to determine the slope.

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat.