# Use implicit differentiation to find ∂z/∂x and ∂z/∂y?

use implicit differentiation to find ∂z/∂x and ∂z/∂y

e^3z=xyz

∂z/∂x=

∂z/∂y=

selected by

e^(3z) = xyz

to find ∂z/∂x → consider z as a function of x and take y to be a constant ... but be careful when you do it b/c it's easy to mess up

so differentiating with respect to x:

e^(3z) * 3 * ∂z/∂x = z * y + xy * 1 * ∂z/∂x ... [using the chain rule on the LHS and the product rule on the RHS]

Factor out the ∂z/∂x:

∂z/∂x [3e^(3z) - xy] = yz

∂z/∂x = yz / [3e^(3z) - xy]

Do the same thing to find ∂z/∂y except consider z to be a function of y and take x to be a constant ...

Differentiating with respect to y:

e^(3z) * 3 * ∂z/∂y = z * x + xy * 1 * ∂z/∂y

∂z/∂y [3e^(3z) - xy] = xz

∂z/∂y = xz / [3e^(3z) - xy]

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat.