The Best answer for Find, correct to the nearest degree, the three angles of the triangle with vertices A(1, 0, −1), B(5, −3, 0),and C(1, 2, 5)?
First find expressions for the vectors that make the triangle:
Vector AB = <5 - 1, -3 - 0, 0 + 1> = <4, -3, 1>
Vector BC = <1 - 5, 2 + 3, 5 - 0> = <-4, 5, 5>
Vector AC = <1 - 1, 2 - 0, 5 + 1> = <0, 2, 6>
Now using dot product:
Vector AB dotted with Vector AC = |AB|*|AC| * cos(∠CAB )
(4)(0) - 3(2) + 1(6) = √(9 + 16 + 1) * √(4 + 36) * cos(∠CAB )
∠CAB = 90 degrees
Vector BC dotted with Vector BA = |BC|*|AB| * cos(∠ABC)
16 + 15 - 5 = √(16 + 9 + 1) * √(16 + 50) * cos(∠ABC )
∠ABC = 51 degrees
Therefore since all angles add up to 180 degrees:
∠BCA = 180 - 90 - 51 degrees = 39 degrees
Lorem ipsum dolor sit amet, consectetur adipiscing elit,
sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam,
quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor
in reprehenderit in voluptate velit esse cillum dolore eu fugiat.
SHOW ANSWER