This is the best answer for If xy + 6ey = 6e, find the value of y'' at the point where x = 0.?
xy + 6e^y = 6e passes through (0,1)
1st DI: x y' + y + y' 6e^y = 0 → y' = -y/(x + 6e^y)
2nd DI: x y'' + y' + y' + y'' 6e^y + (y')² 6e^y = 0
→ y'' = -(2y' + (y')² 6e^y)/(x + 6e^y)
→ y'' = -(2(-y/(x + 6e^y)) + (-y/(x + 6e^y))² 6e^y)/(x + 6e^y)
→ y''(0) = -(2(-1/(0 + 6e^1)) + (-1/(0 + 6e^1))² 6e^1)/(0 + 6e^1) → y''(0) = -(-2/(6e) + (1/(6e))/(6e) → y''(0) = -((-2+1)/(6e))/(6e) → y''(0) = 1/(36e²)

Lorem ipsum dolor sit amet, consectetur adipiscing elit,
sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam,
quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor
in reprehenderit in voluptate velit esse cillum dolore eu fugiat.
SHOW ANSWER