# At what point do the curves r1(t) = t, 3 − t, 35 + t2 and r2(s) = 7 − s, s − 4, s2 intersect?

+1 vote

At what point do the curves r1(t) = t, 3 − t, 35 + t2 and r2(s) = 7 − s, s − 4, s2 intersect?

At what point do the curves r1(t)=<t,3-t,35+t^2> and r2(t) =<7-s,s-4,s^2> intersect?

Also, how do you find the angle of intersection to the nearest degree?

+1 vote
by

1. r1(t) = r2(s) gives rise to three equations in two variables:

.. t = 7-s

.. 3-t = s-4 ... dependent on the first equation

.. 35+t^2 = s^2

These can be rearranged to

.. s+t = 7

.. s^2 - t^2 = 35 = (s+t)(s-t) = 7(s-t)

From which we determine

.. s = 6, t = 1

and the point of intersection is

.. r1(1) = r2(6) = (1, 2, 36)

2. The cosine of the angle between the curves is the dot product of the normalized direction vectors.

.. r1'(1) = (1, -1, 2*1)

Normalized, this is

.. (1, -1, 2)/√6

and

.. r2'(6) = (-1, 1, 2*6), which normalizes to

.. (-1, 1, 12)/√146

The dot product of these is

.. cos(angle) = ((1)(-1) + (-1)(1) + (2)(12))/((√6)(√146)) = 22/√876 = 11/√219

.. angle = arccos(11/√219) ≈ 41.98° ≈ 42°

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat.